碩士 / 國立中興大學 / 化學工程學系所 / 99 / In the development of solar cells, the ultimate goal is to search for the way that turned light energy to electrical energy. Photo-synthetic organisms are used as the catalyst for microbial fuel cells. However, in the literature, the studies mainly focused on improving the efficiency of the battery in the microbial fuel cells or photosynthetic microbial fuel cells. To achieve this purpose, the proton membranes and mediators had to be applied in the process, leading to the death of organisms and thus reducing the fuel cell’s performance. In this study, a membrane-less and mediator-less photosynthetic microbial fuel cell was designed. The effects of biomass of algae, electrode distance, and electric quantity, on the cell performance were investigated.
Spirulina platensis was used as the biocatalyst of the photosynthetic microbial fuel cells on the anode. The anodic electrode being a gilding gold membrane and the cathode is a carbon fiber membrane. It is noted that the chlorophyll concentrations on the anode actually varied the open circuit voltage (OCV). When the electrode distance is 4cm and the concentration of the chlorophyll is 0.5 mg, it has a maximal OCV of 0.49V. When the external resistance is 1kΩ, the cell has a maximum power density of 10mW/m2. Besides, a cultivation of the used algae was carried out. The result displayed that the cultivated algae can provide the same OCV of 0.49V like the original algae after a 15-hour culture.
Identifer | oai:union.ndltd.org:TW/099NCHU5063029 |
Date | January 2011 |
Creators | Chih-Hsun Wei, 魏志勳 |
Contributors | 劉永銓 |
Source Sets | National Digital Library of Theses and Dissertations in Taiwan |
Language | zh-TW |
Detected Language | English |
Type | 學位論文 ; thesis |
Format | 79 |
Page generated in 0.0123 seconds