碩士 / 國立臺灣師範大學 / 機電科技研究所 / 100 / The main purpose of research is to assist the visually impaired who are not familiar with environment, it would cause somebody to be confused because of losing direction. We set RFID sensor which can detect directions and the position to the white cane, and utilize the path-planning algorithm to this system. The method of research is to provide the visually impaired to find the position and the orientation, and give them the function of navigation.
Previous studies use ultrasonic sensor to detect the distance between the walker and the obstacle or to direct the route through the guidance of robots. However, the visually impaired cannot get enough freedoms from it. Moreover, the cost of the development of the robot will increase. With respect to these concerns, we apply the most popular and mature technique—RFID to the guide cane sensor, hoping to give more freedoms to the visually impaired in indoor environment. The study is to combine the RFID reader with the cane as indoor positioning device. Each RFID tag spreading elaborately in indoor floor has one specific verification number. Once the RFID guide cane touches the electronic tag, the location of the visually impaired can be identified. If the visually impaired lost his way, the direction-detect function will get a RF signal. Then, the signal will feed back to main server. The main server will inform the visually impaired via the voice system of the blue tooth device. Besides, the visually impaired can use path-planning device with synergy of Dijkstra’s algorithm that helps the visually impaired to find the shortest path.
Identifer | oai:union.ndltd.org:TW/100NTNU5657019 |
Date | January 2011 |
Creators | 林宗翰 |
Contributors | Mei-Yung Chen, 陳美勇 |
Source Sets | National Digital Library of Theses and Dissertations in Taiwan |
Language | zh-TW |
Detected Language | English |
Type | 學位論文 ; thesis |
Format | 82 |
Page generated in 0.0212 seconds