Use of cross-flow microfiltration combined with activated carbon adsorption for removal of microbes and organic materials in the pretreatment of seawater desalination / 使用掃流微過濾結合活性碳吸附在海水淡化前處理中去除微生物與有機物質

碩士 / 淡江大學 / 化學工程與材料工程學系碩士班 / 102 / In this study, the cross-flow microfiltration in the pretreatment of seawater desalination. Using the porous powdered activated carbon (PAC) attached to the membrane surface, forming a dynamic membrane of appropriate thickness, the use of the interception and adsorption capacity, can effectively remove organic materials and microbes in the seawater to reduce the subsequent membrane fouling occurs.
First, the analysis for the adsorption capacity of PAC showed that Freundlich isotherm is more suitable for the adsorption isotherm model. In the artificial seawater cross-flow filtration experiments, filtration resistance sources can be found in seawater composition of organic matter and microbes attached to the membrane caused. Thus, by combining the PAC and seawater filtration systems, when the dynamic membrane formation, which carbon will adsorption and decomposition organic matter and microbes in seawater, the effluent quality from the filtrate side, concentration of organic, turbidity, chemical oxygen demand (COD) and dissolved organic carbon (DOC) for analysis. The results showed that the concentration and turbidity of seawater by the PAC dynamic membrane filtration are down to zero, and COD and DOC values decreased by about 67% and 92%, respectively, indicating that the dynamic membrane adsorption and interception of pollutants in seawater , you can reach the desalination the effect of pre-treatment. In addition to the COD value, the other indexes are up to standard water of the RO, because the COD value will be affected by the impact of reducing substances.
With the increase of dynamic membrane thickness, it also increases breakthrough time, it can be seen dynamic membrane thickness thicker its reach adsorption equilibrium time longer. From the experimental results, the optimum operating conditions in the cross-flow velocity of 0.3 m/s, filtration pressure is 100 kPa and dynamic membrane thickness of 0.31 cm, there will be a higher filtration rate, which DOC removal efficiency of up to 92%, and its reach adsorption equilibrium time also the longer. Calculated from the theoretical results that, at high pressure and low cross-flow velocity is the most effective to enhance the effectiveness of the overall membrane filtration system, so choose under high pressure and low cross-flow velocity, enabling faster filtration rate and activated carbon adsorption reached equilibrium time longer.

Identiferoai:union.ndltd.org:TW/102TKU05063064
Date January 2014
CreatorsYun-Chiao Lin, 林筠喬
ContributorsKuo-Jen Hwang, 黃國楨
Source SetsNational Digital Library of Theses and Dissertations in Taiwan
Languagezh-TW
Detected LanguageEnglish
Type學位論文 ; thesis
Format108

Page generated in 0.0131 seconds