Return to search

Experimental investigations of anchorage capacity of precast concrete bridge barrier for Performance Level 2

In the last twenty years, the design requirements of bridge barriers have changed with the aim of improving the safety of commuters on the bridge. A majority of precast concrete bridge barriers (PCBB) on highway bridges in British Columbia were designed and installed in accordance with the 1988 Canadian Highway Bridge Design Code (CHBDC). To ensure that these barriers comply with the current code requirements, research and testing were deemed obligatory. In particular, the anchorage capacity of the parapet under the CHBDC design load warrants verification. A finite element model of the barrier was developed in ANSYS to study its structural response. Static testing of a set of barriers was carried out at the University of British Columbia to better understand the behaviour of the barrier. The experimental results were used to calibrate and verify the finite element model. Through the finite element model and experimental results, a simpler model has been developed in a formatted spreadsheet environment to allow better estimates of the anchorage capacity of different barrier designs. The model was scaled to a wider use for practicing engineers so to ease and improve the design of anchorages of precast concrete bridge barrier under Performance Level 2 loading in accordance with the Canadian Highway Bridge Design Code. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/1518
Date11 1900
CreatorsNgan, Caroline Lai Yung
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
Format2722373 bytes, application/pdf
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0396 seconds