Return to search

Multi-period stochastic programming

This dissertation presents various aspects of the solution of the linear multi-period stochastic programming problem. Under relatively mild assumptions on the structure of the random variables present in the problem, the value function at every time stage is shown to be jointly convex in the history of the process, namely the random variables observed so far as well as the decisions taken up to that point.
Convexity enables the construction of both upper and lower bounds on the value of the entire problem by suitable discretization of the random variables. These bounds are developed in Chapter 2, where it is also demonstrated how the bounds can be made arbitrarily sharp if the discretizations are chosen sufficiently fine. The chapter emphasizes computability of the bounds, but does not concern itself with finding the discretizations themselves.
The practise commonly followed to obtain a discretization of a random variable is to partition its support, usually into rectangular subsets. In order to apply the bounds of Chapter 2, one needs to determine the probability mass and weighted centroid for each element of the partition. This is a hard problem in itself, since in the continuous case it amounts to a multi-dimensional integration. Chapter 3 describes some Monte-Carlo techniques which can be used for normal distributions. These methods require random sampling, and the two main issues addressed are efficiency and accuracy. It turns out that the optimal method to use depends somewhat on the probability mass of the set in question.
Having obtained a suitable discretization, one can then solve the resulting large scale linear program which approximates the original problem. Its constraint matrix is highly structured, and Chapter 4 describes one algorithm which attempts to utilize this structure.
The algorithm uses the Dantzig-Wolfe decomposition principle, nesting decomposition
levels one inside the other. Many of the subproblems generated in the course of this decomposition share the same constraint matrices and can thus be solved simultaneously. Numerical results show that the algorithm may out-perform a linear programming package on some simple problems.
Chapter 5, finally, combines all these ideas and applies them to a problem in forest management. Here it is required to find logging levels in each of several time periods to maximize the expected revenue, computed as the volume cut times an appropriate discount factor. Uncertainty enters into the model in the form of the risk of forest fires and other environmental hazards, which may destroy a fraction of the existing forest. Several discretizations are used to formulate both upper and lower bound approximations to the original problem. / Business, Sauder School of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/27304
Date January 1987
CreatorsGassmann, Horand Ingo
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0018 seconds