Return to search

Control and estimation of a chaotic system

A class of deterministic nonlinear systems known as ”chaotic” behaves similar to noise-corrupted systems. As a specific example, Duffing equation, a nonlinear oscillator representing the roll dynamics of a vessel, was chosen for the study. State estimation and control of such systems in the presence of measurement noise is the prime goal of this research. A nonlinear estimation suitable for chaotic systems was evaluated against conventional methods based on linear equivalent model, and proved to be very efficient. A state feedback controller and a sliding mode controller were applied to the chaotic system and both techniques provided satisfactory results. Investigating the persistence of chaotic behavior of the controlled system is a secondary goal. Simulation results showed that the chaotic behavior persisted in case of the linear feedback controller, while in case of the sliding mode controller the system did not exhibit any chaotic behavior. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/29601
Date January 1990
CreatorsGhofranih, Jahangir
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0016 seconds