Return to search

Spin-lattice relaxation in gaseous methane

The spin-lattice relaxation time T₁ has been measured in gaseous CH₄ as a function of density at room temperature. The density region investigated is from 0.006 to 7.0 amagats and T₁ passes through a minimum near 0.04 amagats. The spin-rotation interaction is the dominant relaxation mechanism in gaseous CH₄. Since the spin-rotation constants are accurately known for CH₄, the results provide a check on the existing theory of spin-lattice relaxation for spherical top molecules. An interesting feature was the failure of commonly used theoretical expressions for the density dependence of T₁ to fit the experimental data. A reasonable explanation is that the centrifugal distortion of the CH₄ molecule is indirectly contributing to the spin-lattice relaxation. / Science, Faculty of / Physics and Astronomy, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/34092
Date January 1971
CreatorsBeckmann, Peter Adrian
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0019 seconds