Return to search

Fate and Transport of Selected Endocrine Disrupting Chemicals in Recycled Water Through a Tropical Soil

Endocrine disrupting chemicals (EDCs) are a group of synthetic and natural chemicals that have the potential to mimic the hormone-like activities in the human body. This study was conducted to recognize whether recycled water (a source of EDCs) has the potential to contaminate the environment when such water is used for irrigation purposes. Batch sorption and miscible displacement experiments were conducted to elucidate the fate and transport of four EDCs including estrone, 17β estradiol, octylphenol and nonylphenol in a soil from Hawaii. The sorption capacity of the soil from two depths (2 ft as topsoil and 15 ft as saprolite) was estimated using recycled water and deionized water as the mobile phases. The transport parameters of these contaminants were obtained by using the inverse modeling approaches as provided in the HYDRUS 1D code.
All four EDCs sorbed significantly on the soil. Octylphenol and Nonylphenol rapidly degraded during sorption. The Freundlich model was suitable to describe the sorption isotherm. The sorption nonlinearity was relatively higher for saprolite compared to topsoil. Both physical and chemical non-equilibrium processes were found to affect the mobility of the EDCs in the soil. The migration of EDCs in the soil was enhanced in recycled water due to the presence of dissolved organic carbon and elevated salt concentration. The ambient pH had little effect on sorption of EDCs on the soil from either depth.

Identiferoai:union.ndltd.org:UHAWAII/oai:scholarspace.manoa.hawaii.edu:10125/22263
Date08 1900
CreatorsMohanty, Sanjay K
PublisherWater Resources Research Center, University of Hawaii at Manoa
Source SetsUniversity of Hawaii at Manoa Libraries
Languageen-US
Detected LanguageEnglish
TypeThesis, Text
Formatxiv + 143 pages
RightsAll UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
RelationTheses for the degree of Master of Science (University of Hawaii at Manoa). Civil Engineering; no. 4094. Includes bibliographical references (leaves 131-144)., WRRC Unedited Reports., 2006-03

Page generated in 0.0017 seconds