This work includes the investigation and determination of several classes of disinfection by-products from various naturally occurring model compounds using several oxidative and instrumental techniques. Analytical methodology was developed for the determination and identification of nitrosamine species by gas chromatography with time-of-flight mass spectral detection. In addition, this method was successfully evaluated against existing techniques, and applied to real, raw water effluent samples. Identification and determination of various iodinated disinfection byproduct species was accomplished for the further elucidation of potential health risks associated with the municipal disinfected drinking water supply. Finally, products from the oxidation of a model ketoacid (pyruvic acid) by hypochlorous acid were determined to gain a greater understanding of the possible byproducts produced from a treatment facility that utilizes ozonation as primary disinfectant and hypochlorous acid as a secondary oxidizer.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:dissertations-4582 |
Date | 01 January 2007 |
Creators | Mentzen, Hans H. |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Language | English |
Detected Language | English |
Type | text |
Source | Doctoral Dissertations Available from Proquest |
Page generated in 0.0137 seconds