Return to search

Scientific Computing on Streaming Processors

High performance streaming processors have achieved the distinction of being very efficient and cost-effective in terms of floating-point capacity, thereby making them an attractive option for scientific algorithms that involve large arithmetic effort. Graphics Processing Units (GPUs) are an example of this new initiative to bring vector-processing to desktop computers; and with the advent of 32-bit floating-point capabilities, these architectures provide a versatile platform for the efficient implementation of such algorithms. To exemplify this, the implementation of a Conjugate Gradient iterative solver for PDE solutions on unstructured two- and three-dimensional grids using such hardware is described. This would greatly benefit applications such as fluid-flow solvers which seek efficient methods to solve large sparse systems. The implementation has also been successfully incorporated into an existing object oriented CFD code, thereby enabling the option of using these architectures as efficient math co-processors in the computational framework.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:theses-1241
Date01 January 2008
CreatorsMenon, Sandeep
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses 1911 - February 2014

Page generated in 0.0038 seconds