Return to search

Encapsulation of Redox Active Centers by Deep-Cavity Cavitands

This dissertation describes the effective encapsulation of redox active compounds inside deep-cavity cavitands: Gibb's octaacid40 and Rebek's 41 tetracarboxylate cavitand. Gibb's octaacid is a water-soluble, deep-cavity cavitand that forms well-characterized dimeric molecular capsules around hydrophobic guests. Both 1H NMR spectroscopic and voltammetric experiments clearly reveal that ferrocene plays the role of hydrophobic guest effectively. Ferrocene derivatives (ferrocenylmethyltrimethylammonium (FcNMe3+), ferrocenemethanol (FcOH), and ferrocene carboxylic acid (FcCOOH)) were also found to form inclusion complexes with octaacid cavitand however, in this case 1:1 (host to guest) ratio complexes are formed. This is in strong contrast with the dimeric capsule formed around ferrocene. Under the surveyed experimental conditions encapsulated ferrocene is electrochemically silent. We have also found that the negative charges around this dimeric molecular capsule play a very important role. For instance, hydrophobic cations, such as viologens,60 bind to the outer surface of the capsule. This opened a possibility of mediated electron transfer reactions between molecules bound inside the octaacid capsule and tightly attached to its outer surface in purely synthetic system. The cationic ferrocene derivative, ferrocenylmethyltrimethylammonium (FcNMe3+), was used as a mediator since its electrochemical potential range makes it suitable as a mediator molecule. In fact, our data clearly support that FcNMe3+ mediates electron transfer between encapsulated ferrocene and the electrode surface. Ferrocene, its derivatives (FcNMe3+ and FcOH), and cobaltocenium (Cob+) also form 1:1 inclusion complexes with Rebek's tetracarboxylate cavitand, which surprisingly are all voltammetrically silent. The formation of these inclusion complexes seems to be driven by hydrophobic interactions between the host and the guest. The lack of voltammetric response observed in this work is a very intriguing finding.

Identiferoai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_dissertations-1243
Date18 May 2009
CreatorsPodkoscielny, Dagmara Izabella
PublisherScholarly Repository
Source SetsUniversity of Miami
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceOpen Access Dissertations

Page generated in 0.0017 seconds