Return to search

Linking Hydroperiod with Water Use and Nutrient Accumulation in Wetland Tree Islands

Many large terrestrial ecosystems have patterned landscapes as a result of a positive feedback system between vegetation communities and environmental factors. One example is tree island habitats in the Florida Everglades. Although they only occupy a small portion of the Everglades landscape, tree islands are important features as the focus of nutrient accumulation and wildlife biodiversity in the Everglades ecosystem. The hardwood hammock community on the elevated head of tree island habitats can accumulate high phosphorus concentration in the otherwise P-limited Everglades ecosystem. In this dissertation, I examined two hypotheses derived from the chemohydrodynamic nutrient accumulation model, which suggests that high transpiration of tree island hammock plants is the driving force for nutrient accumulation in tree island soil. According to this model, I hypothesized that tree islands with lower dry season transpiration should have less phosphorus accumulated than the tree islands with higher dry season transpiration. By examining the water use and nutrient status from 18 tree islands in both slough (perennially wet) and prairie (seasonally wet) locations, I was able to compare water availability and nutrient accumulation in slough and prairie tree islands with different marsh hydroperiods. Chapter 1 uses elemental and stable isotope analysis to look at water stress and nutrient concentration in tree island plants. I showed that the prairie tree island plants suffer from drought stress during the dry season, when the marshes in the prairies dry out. Prairie tree islands also have lower soil and plant P concentration than the slough tree islands. Moreover, I showed that foliar N isotope ratio serves as a stable proxy for community level P availability for tree island plants, and prairie tree island plants have less P available than slough tree island plants. In Chapter 2, I showed that the satellite imagery derived normalized difference water index (NDWI) provides a robust indicator of community level canopy water content of these tree islands. NDWI, used as a proxy for water status, was positively related to foliar N isotope ratio, which suggests that water availability is linked to nutrient availability in the tree island hardwood hammock plant communities. These findings are consistent to the chemohydrodynamic nutrient accumulation model. In Chapter 3, I used sap flow sensors on individual trees to provide a real-time measurement of plant transpiration. I showed that tree island plant transpiration is affected by multiple factors including weather fluctuations, marsh water depth regulated by local water management, and canopy structure of different tree islands. Overall, my dissertation establishes a link between tree island plant water use and nutrient accumulation. It could be potentially important for future restoration plan of tree islands and Everglades hydrological management.

Identiferoai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_dissertations-1560
Date06 May 2011
CreatorsWang, Xin
PublisherScholarly Repository
Source SetsUniversity of Miami
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceOpen Access Dissertations

Page generated in 0.0024 seconds