Orientador: Roberta Spolon / Banca: Kelton Augusto Pontara da Costa / Banca: Anderson Francisco Talon / Resumo: No início desta década havia cerca de 5 bilhões de telefones em uso gerando dados. Essa produção global aumentou aproximadamente 40% ao ano no início da década passada. Esses grandes conjuntos de dados que podem ser capturados, comunicados, agregados, armazenados e analisados, também chamados de Big Data, estão colocando desafios inevitáveis em muitas áreas e, em particular, no campo Machine Learning. Algoritmos de Machine Learning são capazes de extrair informações úteis desses grandes repositórios de dados e por este motivo está se tornando cada vez mais importante o seu estudo. Os programas aptos a realizarem essa tarefa podem ser chamados de algoritmos de classificação e clusterização. Essas aplicações são dispendiosas computacionalmente. Para citar alguns exemplos desse custo, o algoritmo Quality Threshold Clustering tem, no pior caso, complexidade O(�����������������5). Os algoritmos hierárquicos AGNES e DIANA, por sua vez, possuem O(n²) e O(2n) respectivamente. Sendo assim, existe um grande desafio, que consiste em processar grandes quantidades de dados em um período de tempo realista, encorajando o desenvolvimento de algoritmos paralelos que se adequam ao volume de dados. O objetivo deste trabalho é apresentar a paralelização do algoritmo de hierárquico divisivo DIANA. O desenvolvimento do algoritmo foi realizado em MPI e OpenMP, chegando a ser três vezes mais rápido que a versão monoprocessada, evidenciando que embora em ambientes de memória distribuídas necessite de... / Abstract: Earlier in this decade there were about 5 billion phones in use generating data. This global production increased approximately 40% per year at the beginning of the last decade. These large datasets that can be captured, communicated, aggregated, stored and analyzed, also called Big Data, are posing inevitable challenges in many areas, and in particular in the Machine Learning field. Machine Learning algorithms are able to extract useful information from these large data repositories and for this reason their study is becoming increasingly important. The programs that can perform this task can be called classification and clustering algorithms. These applications are computationally expensive. To cite some examples of this cost, the Quality Threshold Clustering algorithm has, in the worst case, complexity O (n5). The hierarchical algorithms AGNES and DIANA, in turn, have O (n²) and O (2n) respectively. Thus, there is a great challenge, which is to process large amounts of data in a realistic period of time, encouraging the development of parallel algorithms that fit the volume of data. The objective of this work is to present the parallelization of the DIANA divisive hierarchical algorithm. The development of the algorithm was performed in MPI and OpenMP, reaching three times faster than the monoprocessed version, evidencing that although in distributed memory environments need synchronization and exchange of messages, for a certain degree of parallelism it is advantageous ... / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000908879 |
Date | January 2018 |
Creators | Ribeiro, Hethini do Nascimento. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas. |
Publisher | São José do Rio Preto, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese, Portuguese, Texto em português; resumos em português e em inglês |
Detected Language | Portuguese |
Type | text |
Format | 65 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0022 seconds