Orientador: Roberto Carvalheiro / Coorientador: Danísio Prado Munari / Coorientador: Haroldo Henrique de Rezende Neves / Resumo: A análise de componentes principais (ACP) é uma técnica da estatística multivariada usada para avaliar as relações entre diferentes características a fim de eliminar a redundância resultante de suas correlações. No melhoramento genético animal, a ACP tem sido usada para explorar possíveis interpretações biológicas associadas aos componentes principais (CPs) que podem levar a caracterização de diferentes biotipos de animais. Os objetivos do presente estudo foram: i) avaliar as relações entre características de crescimento, escore visual e reprodutiva, por meio de ACP; ii) identificar, por meio de estudo de associação genômica ampla (GWAS), regiões genômicas que diferenciam os animais quanto aos diferentes componentes; e iii) avaliar a habilidade de predição de valores genéticos genômicos (GEBVs) obtidos para os CPs. Foram utilizados dados fenotípicos de 355.524 animais da raça Nelore provenientes da base de dados Aliança Nelore. Destes, foram genotipados 3.382 animais em painel lllumina® BovineHD (HD, ~777.000 SNPs) e 137 animais em painel GeneSeek Genomic Profiler Bovine HD (~76.000 SNPs). Os animais genotipados com o painel GGP-HD tiveram seus genótipos imputados para o painel mais denso (HD). Após o controle de qualidade, 3.519 animais com informações genotípicas de 471.880 SNPs permaneceram nas análises. A ACP foi realizada utilizando-se a matriz de (co)variância genética aditiva (AT) obtida a partir de análise multi-característica. As estimativas dos efeitos dos SNPs fora... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Principal component analysis (PCA) is a multivariate statistical technique that allows evaluating relationships among different traits in order to eliminate the redundancy resulting from their correlations. In animal breeding, PCA has been used to explore possible biological interpretations associated with the principal components (PCs) that can lead to the characterization of distinguished animal's biotype. The objectives of the present study were: i) to evaluate relationships among growth, visual scores, and reproductive traits by performing a PCA; ii) to identify genomic regions associated with PCs by performing a genome-wide association study (GWAS) on the main PCs; and iii) to evaluate the prediction ability of genomic breeding values (GEBVs) obtained for the PCs. Phenotypic data from 355,524 Nellore animals provided by the Alliance Nellore database, were used in this investigation. A total of 3,382 Nellore animals were genotyped using the lllumina® BovineHD chip (HD, ~777,000 SNPs) and 137 animals were genotyped using the GeneSeek Genomic Profiler Bovine HD chip (~76,000 SNPs). The GGP-HD genotypes were imputed to the HD genotypes. After genomic data quality control, 471,880 SNPs from 3,519 animals were available. The PCA was applied on the additive genetic (co)variance matrix (AT) obtained using multi-trait analysis. For GWAS, SNP effects were estimated using the weighted single-step GBLUP and the BayesC methods. The genes identified within the top-10 ranking windows that explained the highest proportion of variance were used for further functional analyses. For the genomic prediction study, the GEBVs were predicted using three distinguish response variables: EBV of the original traits, EBV of the PCs, and EBV of a selection index used by some Nellore cattle commercial breeding programs. The geno... (Complete abstract click electronic access below) / Doutor
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000911725 |
Date | January 2018 |
Creators | Vargas, Giovana. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências Agrárias e Veterinárias. |
Publisher | Jaboticabal, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | English |
Type | text |
Format | 96 p. |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0025 seconds