Return to search

Terrain Aided Underwater Navigation using Bayesian Statistics / Terrängstöttad undervattensnavigering baserad på Bayesiansk statistik

<p>For many years, terrain navigation has been successfully used in military airborne applications. Terrain navigation can essentially improve the performance of traditional inertial-based navigation. The latter is typically built around gyros and accelerometers, measuring the kinetic state changes. Although inertial-based systems benefit from their high independence, they, unfortunately, suffer from increasing error-growth due to accumulation of continuous measurement errors. </p><p>Undersea, the number of options for navigation support is fairly limited. Still, the navigation accuracy demands on autonomous underwater vehicles are increasing. For many military applications, surfacing to receive a GPS position- update is not an option. Lately, some attention has, instead, shifted towards terrain aided navigation. </p><p>One fundamental aim of this work has been to show what can be done within the field of terrain aided underwater navigation, using relatively simple means. A concept has been built around a narrow-beam altimeter, measuring the depth directly beneath the vehicle as it moves ahead. To estimate the vehicle location, based on the depth measurements, a particle filter algorithm has been implemented. A number of MATLAB simulations have given a qualitative evaluation of the chosen algorithm. In order to acquire data from actual underwater terrain, a small area of the Swedish lake, Lake Vättern has been charted. Results from simulations made on this data strongly indicate that the particle filter performs surprisingly well, also within areas containing relatively modest terrain variation.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-1682
Date January 2002
CreatorsKarlsson, Tobias
PublisherLinköping University, Department of Electrical Engineering, Institutionen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text
RelationLiTH-ISY-Ex, ; 3292

Page generated in 0.0027 seconds