Return to search

Robust Control Solution of a Wind Turbine

Power generation using wind turbines is a highly researched control field. Many control designs have been proposed based on continuous-time models like PI-control, or state observers with state feedback but without special regard to robustness to model uncertainties. The aim of this thesis was to design a robust digital controller for a wind turbine. The design was based on a discrete-time model in the polynomial framework that was derived from a continuous-time state-space model based on data from a real plant. A digital controller was then designed by interactive pole placement to satisfy bounds on sensitivity functions. As a result the controller eliminates steady state errors after a step response, gives sufficient damping by using dynamical feedback, tolerates changes in the dynamics to account for non linear effects, and avoids feedback of high frequency un modeled dynamics.
CreatorsVanegas A., Fernando, Zamacona M., Carlos
PublisherHögskolan i Halmstad, Högskolan i Halmstad
Source SetsDiVA Archive at Upsalla University
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text

Page generated in 0.0025 seconds