Return to search

Design and Experiments with High Power Microwave Sources : The Virtual Cathode Oscillator

High-Power Microwaves (HPM) can be used to intentionally disturb or destroy electronic equipment at a distance by inducing high voltages and currents.This thesis presents results from simulations and experiments with a narrow band HPM source, the vircator. The high voltages needed to generate HPM puts the vircator under great stress, especially the electrode materials. Several electrode materials have been tested for endurance and their influence on the characteristics of the microwave pulse. With the proper materials the shot-to-shot variations are small and the geometry can be optimized in terms of e.g. output power or frequency content. Experiments with a resonant cavity added to the vircator geometry showed that with proper tuning of the cavity, the frequency content of the microwave radiation is very narrow banded and in this case the highest fields are generated. The vircator can be built in different geometries. Four different vircator types are investigated and the coaxial vircator is found to have advantages as a high radiated power and the possibility to vary the polarization during operation.Since HPM pulses are very short and have high field strengths, special field probes are needed. An HPM pulse may shift in frequency during the pulse and therefore it is very important to be able to compensate for the frequency dependence of the entire measurement system. The development and use of a far-field measurement system is described. / <p>QC 20121122</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-104794
Date January 2012
CreatorsMöller, Cecilia
PublisherKTH, Rymd- och plasmafysik, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-EE, 1653-5146 ; 2012:056

Page generated in 0.0097 seconds