Return to search

Betulin-modified cellulosic textile fibers with improved water repellency, hydrophobicity and antibacterial properties

Textiles made from natural sources, such as cotton and flax, have advantages over those made of synthetic fibers in terms of sustainability. Unlike major synthetic fibers that have a negative impact on the environment due to poor biodegradability, cotton cellulose is a renewable material.Cotton cellulose fibers exhibit various attractive characteristics such as softness and inexpensiveness. Cellulosic textiles can be easily wetted, since the structure contains a large amount of hydrophilic hydroxyl groups, and when water repellency is needed, this is a disadvantage. Currently, paraffin waxes or fluorinated silanes are used to achieve hydrophobicity, but this contradicts the concept of green chemistry since these chemicals are not biodegradable. The use of bio-based materials like forest residues or side-streams from forest product industries might be a good alternative, since this not only decreases the pressure on the environment but can also increase the value of these renewable resources.Betulin is a hydrophobic extractive present in the outer bark of birch trees (Betula verrucosa). Nowadays, the birch bark containing betulin generated in the paper industry is disposed of by incineration as a solid fuel to provide energy, but this application is not highly valuable and this motivates us to see whether betulin can be used as a hydrophobe to prepare waterproof cellulosic textiles. Methods of dip-coating, film compression molding and grafting were performed to build “betulin-cellulosic textile system” to render the textile with hydrophobicity and other functions. The textile impregnated in a solution of betulin-based copolymer exhibited a contact angle of 151°, which indicated that superhydrophobicity can be reached. AATCC water spray test results showed that cellulosic textile coated with betulin-based film had a water repellency of 80, which is the third highest class according to the rating standards. Betulin-grafted textiles were also prepared and showed a static water contact angle of 136°, and an antibacterial property with a bacterial removal of 99%.This thesis proposes that betulin can be used as a green alternative in functional material preparation. By developing betulin, a more value-added application rather than incineration can be achieved. / <p>QC 20190205</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-243638
Date January 2019
CreatorsHuang, Tianxiao
PublisherKTH, Träkemi och massateknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-FOU ; 2019:14

Page generated in 0.0028 seconds