Needle Navigation for Image Guided Brachytherapy of Gynecologic Cancer / Navigering av nål vid bildstyrd brachyterapi av gynekologisk cancer

In the past twenty years, the combination of the advances in medical imaging technologies and therapeutic methods had a great impact in developing minimally invasive interventional procedures. Although the use of medical imaging for the surgery and therapy guidance dates back to the early days of x-ray discovery, there is an increasing evidence in using the new imaging modalities such as computed tomography (CT), magnetic reso- nance imaging (MRI) and ultrasound in the operating rooms. The focus of this thesis is on developing image-guided interventional methods and techniques to support the radiation therapy treatment of gynecologic cancers. Gynecologic cancers which involves malignan- cies of the uterus, cervix, vagina and the ovaries are one of the top causes of mortality and morbidity among the women in U.S. and worldwide. The common treatment plan for radiation therapy of gynecologic cancers is chemotherapy and external beam radiation therapy followed by brachytherapy. Gynecological brachytherapy involves placement of interstitial catheters in and around the tumor area, often with the aid of an applicator. The goal is to create an optimal brachytherapy treatment plan that leads to maximal radiation dose to the cancerous tissue and minimal destructive radiation to the organs at risk. The accuracy of the catheter placement has a leading effect in the success of the treatment. However there are several techniques are developed for navigation of catheters and needles for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is obviously lacking for gynecologic brachytherapy procedures. This thesis proposes a technique which aims to increase the accuracy and efficiency of catheter placements in gynecologic brachytherapy by guiding the catheters with an electromagnetic tracking system. To increase the accuracy of needle placement a navigation system has been set up and the appropriate software tools were developed and released for the public use as a module in the open-source 3D Slicer software. The developed technology can be translated from benchmark to the bedside to offer the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs including bladder, rectum and bowel. To test the designed system two independent experiments were designed and performed on a phantom model in order to evaluate the targeting accuracy of the tracking system and the mean targeting error over all experiments was less than 2.9 mm, which can be compared to the targeting errors in the available commercial clinical navigation systems.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-248042
Date January 2019
CreatorsMehrtash, Alireza
PublisherKTH, Skolan för kemi, bioteknologi och hälsa (CBH)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2019:014

Page generated in 0.0022 seconds