Return to search

Regret Minimization in the Gain Estimation Problem

A novel approach to the gain estimation problem,using a multi-armed bandit formulation, is studied. The gain estimation problem deals with the problem of estimating the largest L2-gain that signal of bounded norm experiences when passing through a linear and time-invariant system. Under certain conditions, this new approach is guaranteed to surpass traditional System Identification methods in terms of accuracy.The bandit algorithms Upper Confidence Bound, Thompson Sampling and Weighted Thompson Sampling are implemented with the aim of designing the optimal input for maximizing the gain of an unknown system. The regret performance of each algorithm is studied using simulations on a test system. Upper Confidence Bound, with exploration parameter set to zero, performed the best among all tested values for this parameter. Weighted Thompson Sampling performed better than Thompson Sampling.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-254234
Date January 2019
CreatorsTourkaman, Mahan
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2019:129

Page generated in 0.0019 seconds