Return to search

Unmanned Aerial Vehicle Powered by Hybrid Propulsion System / Drönare driven på vätgas-batterihybridsystem

I samband med den globala uppvärmningen ökar efterfrågan för rena och förnybara bränslen alltmer i dagens samhälle. Eftersom flygindustrin idag är ansvarig för samma mängd växthusgaser som all motortrafik i Sverige, skulle ett byte till en avgasfri energikälla för flygfarkoster vara ett stort framsteg. Därför har projektet genom modellering framtagit ett hybridsystem av ett batteri och en bränslecell och undersökt hur kombinationen av olika storlekar på dem presterar i en driftcykel. Då batterier har hög specifik effekt men är tunga, kompletteras de med fördel av bränsleceller, som är lättviktiga och bidrar med uthållig strömförsörjning. På så sätt blir hybriden optimal för flygfarkoster. Kandidatarbetet är en del av projektet Green Raven, ett tvärvetenskapligt samarbete mellan instutitionerna Tillämpad Elektrokemi, Mekatronik och Teknisk Mekanik på Kungliga Tekniska Högskolan. Driftcykelmodelleringen gjordes i Simulink, och flera antaganden gjordes beträffande effektprofilen, samt bränslecellens mätvärden och effekt. Tre olika energihushållningsscheman skapades, vilka bestämde bränslecellseffekten beroende på vätgasnivån och batteriets laddningstillstånd. Skillnaden på systemen var vilka intervall av laddningstillstånd hos batteriet som genererade olika effekt hos bränslecellen.  Det bästa alternativet visade sig vara 0/100-systemet, eftersom det var det enda som inte orsakede någon degradering av bränslecellens kapacitet. / In today’s society, with several environmental challenges such as global warming, the demand for cleanand renewable fuels is ever increasing. Since the aviation industry in Sweden is responsible for the sameamount of greenhouse gas emissions as the motor traffic, a change to a non-polluting energy source forflying vehicles would be considerable progress. Therefore, this project has designed a hybrid system of abattery and a fuel cell and investigated how different combinations of battery and fuel cell sizes perform ina drive cycle, through computer modelling. As batteries possess a high specific power but are heavy, thefuel cells with high specific energy complement them with a sustained and lightweight power supply,which makes the hybrid perfect for aviation. The bachelor thesis is a part of Project Green Raven, aninterdisciplinary collaboration with the institutions of Applied Electrochemistry, Mechatronics andEngineering Mechanics at KTH Royal Institute of Techology. The drive cycle simulations were done inSimulink, and several assumptions regarding the power profile, fuel cell measurements and power weremade. Three different energy management strategies were set up, determining the fuel cell powerdepending on hydrogen availability and state of charge of the battery. The strategies were called 35/65,20/80 and 0/100, and the difference between them was at which state of charge intervals the fuel cellchanged its power output. The best strategy proved to be 0/100, since it was the only option which causedno degradation of the fuel cell whatsoever.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-277115
Date January 2020
CreatorsÅkesson, Elsa, Kempe, Maximilian, Nordlander, Oskar, Sandén, Rosa
PublisherKTH, Skolan för kemi, bioteknologi och hälsa (CBH)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2020:191

Page generated in 0.0027 seconds