Return to search

Programming and Optimisation of a Digital Holographic Microscope for the Study of Eye Tissue / Programmering och optimering av ett digitalt holografiskt mikroskop för studier av ögonvävnad

The objectives of the present project were to set up, optimise and characterise a digitalholographic microscopy (DHM) laboratory set-up designed for the study of eyetissue and to implement and optimise digital data processing and noise reductionroutines. This work is part of a collaborative project aiming to provide quantitativemethods for the in vitro and in vivo characterisation of human corneal transparency.The laboratory set-up is based on a commercial laboratory microscope with zoomfunction (a “macroscope”). In continuation of previous work, we completed and optimised,and extended a software for holographic signal processing and numericalpropagation of the wavefront.To characterise the set-up and quantify its performances for standard operationand in its DHM configuration, we compare the magnification and resolution to theoreticalvalues for a given set of parameters. We determined the magnification factorand the rotation angle between the object and camera planes. With a laser wavelengthof 532 nm, a x1 objective and a zoom setting of x2.9 (which corresponds to aplane sample wavefront), we measured a magnification of 1.68. With the same parameters,we measure a holographic resolution of about 11 m. The wavefront phasecould be determined with a precision of a fraction of the wavelength.We subsequently performed analysis of the relative contribution of coherent noiseand implemented and evaluated several noise reduction routines. While the impactof coherent noise remained visible in the amplitude image, interferometric precisionwas obtained for the phase of the wavefront and the set-up was considered qualifiedfor its intended use for corneal characterisation.A first test measurement was performed on primate cornea.Subsequent work will address the further quantitative characterisation of the setupfor the full set of parameters (objectives, zoom positions, wavelengths), test measurementson samples with known transmission and light scattering properties (e.g.solutions of PMMA beads) and the comparison of the results with the predictions ofa theoretical model, and measurements on animal and human tissue.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-292357
Date January 2018
CreatorsDilhan, Lucie
PublisherKTH, Tillämpad fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2018:029

Page generated in 0.0025 seconds