Return to search

Deep learning, LSTM and Representation Learning in Empirical Asset Pricing

In recent years, machine learning models have gained traction in the field of empirical asset pricing for their risk premium prediction performance. In this thesis, we build upon the work of [1] by first evaluating models similar to their best performing model in a similar fashion, by using the same dataset and measures, and then expanding upon that. We explore the impact of different feature extraction techniques, ranging from simply removing added complex- ity to representation learning techniques such as incremental PCA and autoen- coders. Furthermore, we also introduce recurrent connections with LSTM and combine them with the earlier mentioned representation learning techniques. We significantly outperform [1] in terms of monthly out-of-sample R2, reach- ing a score of over 3%, by using a condensed version of the dataset, without interaction terms and dummy variables, with a feedforward neural network. However, across the board, all of our models fall short in terms of Sharpe ratio. Even though we find that LSTM works better than the benchmark, it does not outperform the feedforward network using the condensed dataset. We reason that this is because the features already contain a lot of temporal information, such as recent price trends. Overall, the autoencoder based models perform poorly. While the linear incremental PCA based models perform better than the nonlinear autoencoder based ones, they still perform worse than the bench- mark. / Under de senaste åren har maskininlärningsmodeller vunnit kredibilitet inom området empirisk tillgångsvärdering för deras förmåga att förutsäga riskpre- mier. I den här uppsatsen bygger vi på [1]s arbetet genom att först implemente- ra modeller som liknar deras bäst presterande modell och utvärdera dem på ett liknande sätt, genom att använda samma data och mått, och sedan bygga vida- re på det. Vi utforskar effekterna av olika variabelextraktionstekniker, allt från att helt enkelt ta bort extra komplexitet till representationsinlärningstekniker som inkrementell PCA och autoencoders. Vidare introducerar vi även LSTM och kombinerar dem med de tidigare nämnda representationsinlärningstekni- kerna. Min bästa modell presterar betydligt bättre än [1]s i termer av månatlig R2 för testdatan, och når ett resultat på över 3%, genom att använda en kompri- merad version av datan, utan interaktionstermer och dummyvariabler, med ett feedforward neuralt nätverk. Men överlag så brister alla mina modeller i ter- mer av Sharpe ratio. Även om LSTM fungerar bättre än riktvärdet, överträffar det inte feedforward-nätverket med den komprimerade datamängden. Vi re- sonerar att detta är på grund av inputvariablerna som redan innehåller en hel del information över tid, som de senaste pristrenderna. Sammantaget presterar de autoencoderbaserade modellerna dåligt. Även om de linjära inkrementell PCA-baserade modellerna presterar bättre än de olinjära autoencoderbaserade modellerna, presterar de fortfarande sämre än riktvärdet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-319509
Date January 2022
Creatorsvon Essen, Benjamin
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:326

Page generated in 0.0022 seconds