Return to search

A new generation density functional towards chemical accuracy

Density functional theory (DFT) has become the leading method in calculating theelectronic structures and properties from first principles. In practical applicationsof DFT in the frame work of Kohn-Sham (KS) method, an approximate exchange-correlation functional has to be chosen. Hence, the success of a DFT calculationcritically depends on the quality of the exchange-correlation functional.This thesis focuses on the development and validation of the so-called dou-bly hybrid density functionals (DHDFs). DHDFs present a new generation offunctionals, which not only have a non-local orbital-dependent component in theexchange part, but also incorporate the information of unoccupied orbitals in thecorrelation part. I will first give an overview of modern DFT in the introductorychapters, emphasizing the theoretical bases of a newly developed DHDF, XYG3.I will then present further examination of XYG3 and new development on top ofXYG3, leading to XYG3o and XYG3s. Attempts have also been made to extractband structure information of a periodic system from cluster model calculations. / QC 20110607

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-33857
Date January 2011
CreatorsYing, Zhang
PublisherKTH, Teoretisk kemi och biologi, Stockholm : KTH Royal Institute of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-BIO-Report, 1654-2312

Page generated in 0.0022 seconds