Return to search

Concepts for compact solid-state lasers in the visible and UV

In many fields, scientific or industrial, optical devices that can be tailored in terms of spectral qualities and output power depending on the application in question are attractive. Nonlinear optics in combination with powerful laser sources provide a tool to achieve essentially any wavelength in the electromagnetic spectrum, and the advancement of material technology during the last decade has opened up new possibilities in terms of realising such devices. The main part of the thesis deals with the development of compact functional lasers based on nonlinear interaction utilising diode-pumped solid-state lasers and also laser diodes. Efficient frequency conversion into the visible and ultraviolet part of the electromagnetic spectrum has been achieved, using both Nd:YAG and Nd:YVO4 lasers as well as a semiconductor laser as the fundamental light sources. For the nonlinear conversion, periodically poled potassium titanyl phosphate (PPKTP), bismuth triborate (BiBO) and beta barium borate (BBO) have been employed. In the search for compact and reliable light sources emitting in the visible part of the spectrum, two different approaches have been explored. First, a scheme based on sum-frequency mixing of a diode-pumped solid-state laser and a laser diode of good beam quality. The idea of this approach is to take advantage of the individual strength of each device, which would be the flexibility in terms of wavelength for the laser diode and the possibility to reach high output power from the diode-pumped solid-state laser. Second, by mixing two different solid-state lasers substantially more output power could be generated albeit at a cost of less freedom in the choice of spectral output. As these two light sources had their central wavelength at 492 nm and 593 nm, respectively, they are highly interesting in biomedical applications since they correspond to the peak absorption of several popular fluorophores. In applications such as lithography, material synthesis and fibre grating fabrication, laser sources emitting in the deep-UV spectrum are desired. An all solid-state 236 nm laser source with 20 mW of average power have been designed and constructed, by frequency-quadrupling a passively Q-switched Nd:YAG laser lasing on a quasi-three level transition. Also, a novel concept for miniaturising solid-state lasers has been examined. Using a heat-conductive polymer carrier, a generic approach especially suited for mass-production of functional laser devices is presented. Finally, it has been proven that GRIN lenses can provide a very compact beam shaping solution to standard laser diodes based on the beam twisting approach. This method offers several advantages such as compactness of the beam shaping system, automated assembly in solid-state laser manufacturing due to the shape of these lenses and polarisation preservation of the laser diode output. / QC 20100903

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-4223
Date January 2006
CreatorsJohansson, Sandra
PublisherKTH, Fysik, Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-FYS, 0280-316X ; 2006:72

Page generated in 0.1207 seconds