Return to search

Influence of metallic fission products and self irradiation on the rate of spent nuclear fuel-matrix dissolution

Denna licentiatavhandling behandlar effekten av två inneboende egenskaper (fissions produkter och egenbestrålning) hos utbränt kärnbränsle på hastigheten för strålningsinducerad upplösning av bränslematris (UO2). I ett framtida djupförvar kommer det utbrända kärnbränslet att deponeras 500 meter ner i berggrunden i en reducerande miljö. Under dessa förhållanden är UO2-matrisen själv en av de skyddande barriärerna mot frigörande av radionuklider, på grund av dess låga löslighet. När bränslet kommer i kontakt med vatten kommer U(IV) att oxideras till U(VI) av radiolysprodukter från vattnet och lösligheten för bränslematrisen kommer därmed att öka betydligt. De flesta tidigare studier har utförts på obestrålad UO2 som skiljer sig signifikant från utbränt kärnbränsle. I utbränt kärnbränsle är de flesta fissionsprodukterna och neutronaktivieringsprodukterna radioaktiva och bränslet kommer därför bli bestrålat av sig självt. Effekten av joniserande strålning på reaktiviteten för UO2(s) har undersökts här. UO2 (pulver och fragment av en kuts) bestrålades i en 60Co γ-källa eller framför en elektronaccelerator varpå reaktiviteten för UO2 studerades genom oxidation av UO2 med MnO4 -. Det visade sig att reaktiviteten för UO2 ökar när det blir bestrålat för första gången (<20 kGy). Effekten ökar med ökande dos tills den når ett maxvärde ~1.3 gånger reaktiviteten för obestrålad UO2 vid torrbestrålning. Vid våtbestrålning ökar en dos på 140 kGy reaktiviteten 2.5 gånger. Effekten verkar vara permanent. Tidigare studier har visat att H2O2 är den viktigaste oxidanten för upplösning av utbränt kärnbränsle under djupförvarsförhållanden. I vätgasatmosfär, som förväntas i ett djupförvar, har det visat sig att upplösningshastigheten är långsammare. Det har delvis förklarats med reaktionen mellan H2O2 och H2, som är väldigt långsam utan katalysator. Den katalytiska effekten av UO2 på den reaktionen har undersökts och det visades att den inte katalyseras av UO2. En annan möjlig katalysator för reaktionen är ε-partiklar (ädelmetallpartiklar bestående av Mo, Ru, Tc, Pd och Rh) som bildats av fissionsprodukterna. Pd är en välkänd katalysator för reduktion med H2. Den eventuella katalytiska effekten av Pd har undersökts här. Även en eventuell katalytisk effekt av Pd på reduktionen av U(VI) med H2 undersöktes, både i vattenfas och i UO2-kutsar innehållande olika mängder Pd (som en modell för ε-partiklar). Vi fann att Pd har en katalytisk effekt på reaktionen mellan H2O2 och H2 och andra ordningens hastighetskonstant är bestämd till (2.1±0.1)x10-5 m s-1. Pd har också en katalytisk effekt på reduktionen av U(VI) med H2 både i vattenlösning, hastighetskonstant (1.5±0.1)x10-5 m s-1, och i den fasta fasen. Hastighetskonstanten för processen i fast fas är 4x10-7 m s-1 och 7x10-6 m s-1 för kutsar med 1 respektive 3 % Pd. Dessa värden är väldigt nära diffusionsgränsen för den här typen av system. Den katalytiska effekten i den fasta fasen visar att upplösningen för 100 år gammalt bränsle kan stoppas helt. Vid 40 bar H2 krävs 10-20 ppm ädelmetallpartiklar och med 1 % ädelmetallpartiklar räcker det med 0.1 bar H2 för att stoppa upplösningen. / This licentiate thesis deals with the influence of two inherent properties (fission products and self irradiation) of spent nuclear fuel on the rate of radiation induced fuel matrix (UO2) dissolution. In a future deep repository the spent nuclear fuel will be deposited 500 meters down in the bedrock in a reducing environment. Under these conditions the UO2-matrix itself is one of the protective barriers against release of radionuclides due to its very low solubility. When the fuel comes in contact with water, U(IV) will be oxidized to U(VI) by products from radiolysis of water and the solubility of the fuel matrix will increase significantly. Most previous studies have been performed on unirradiated UO2 which differ significantly from spent nuclear fuel. In spent nuclear fuel most of the fission products and neutron activation products are radioactive and therefore the fuel will be irradiated by itself. The effect of ionizing radiation on the reactivity of UO2 has been investigated here. UO2 (powder and fragment of a pellet) has been exposed to irradiation in a 60Co γ-source or in an electron accelerator and then the redox reactivity was studied. The kinetics for oxidation of UO2 by MnO4 - was used as a monitoring reaction. It was shown that the reactivity of UO2 increases when being irradiated for the first time (<20kGy). The effect increases with increasing dose until reaching a maximum value ~1.3 times the reactivity of unirradiated UO2 for dry irradiation. For wet irradiation a dose of 140 kGy increases the reactivity ~2.5 times. This effect appears to be permanent. Previous studies have shown that H2O2 is the most important oxidant for spent nuclear fuel dissolution under deep repository conditions. Under H2 atmosphere, as expected in a deep repository, it has been shown that the dissolution rate is slower. This has partly been attributed to the reaction between H2O2 and H2 which is very slow without a catalyst. The catalytic effect of UO2 on this reaction was examined showing that UO2 does not catalyze this reaction. Another possible catalyst for this reaction is the ε-particles (noble metal particles containing Mo, Ru, Tc, Pd and Rh) formed by the fission products. Pd is a well known catalyst for reduction by H2. The possible catalytic effect of Pd on the reaction between H2O2 and H2 is examined here. The possible catalytic effect of Pd on the reduction of U(VI) by H2 is also examined, both in aqueous phase and in UO2 pellets containing different amounts of Pd (as a model for spent fuel containing ε-particles). It was found that Pd has a catalytic effect on the reaction between H2O2 and H2, the second order rate constant is determined to (2.1±0.1)x10-5 m s-1. Pd also has a catalytic effect on the reduction of U(VI) by H2 both in aqueous solution, rate constant (1.5±0.1)x10-5 m s-1, and in the solid phase, rate constants 4x10-7 m s-1 and 7x10-6 m s-1 for pellets with 1 and 3 % Pd respectively. These values are very close to the diffusion limit for these systems. The catalytic effect in the solid phase shows that the dissolution for 100 year old fuel can be completely inhibited, at 40 bar H2 a noble metal particle content of 10-20 ppm is needed and with 1 % noble metal particle content 0.1 bar H2 is enough to stop the dissolution. / QC 20101119

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-4736
Date January 2008
CreatorsNilsson, Sara
PublisherKTH, Kärnkemi, Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-CHE-Report, 1654-1081 ; 2008:35

Page generated in 0.0026 seconds