The objective with this Master’s thesis was to develop, implement and evaluate an iterative procedure for hierarchical clustering with good overall performance which also merges features of certain already described algorithms into a single integrated package. An accordingly built tool was then applied to an allergen IgE-reactivity data set. The finally implemented algorithm uses a hierarchical approach which illustrates the emergence of patterns in the data. At each level of the hierarchical tree a partitional clustering method is used to divide data into k groups, where the number k is decided through application of cluster validation techniques. The cross-reactivity analysis, by means of the new algorithm, largely arrives at anticipated cluster formations in the allergen data, which strengthen results obtained through previous studies on the subject. Notably, though, certain unexpected findings presented in the former analysis where aggregated differently, and more in line with phylogenetic and protein family relationships, by the novel clustering package.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-10273 |
Date | January 2007 |
Creators | Malm, Patrik |
Publisher | Linköpings universitet, Institutionen för fysik, kemi och biologi, Institutionen för fysik, kemi och biologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds