Return to search

A Scalable Architecture for Massive MIMO Base Stations Using Distributed Processing

Massive MIMO is an emerging technology for future wireless systems that has received much attention from both academia and industry recently. The most prominent feature of Massive MIMO is that the base station is equiped with a large number of antennas. It is therefore important to create scalable architectures to enable simple deployment in different configurations. In this thesis, a distributed architecture for performing the baseband processing in a massive OFDM MU-MIMO system is proposed and analyzed. The proposed architecture is based on connecting several identical nodes in a K-ary tree. It is shown that, depending on the chosen algorithms, all or most computations can be performed in a distrbuted manner. Also, the computational load of each node does not depend on the number of nodes in the tree (except for some timing issues) which implies simple scalability of the system. It is shown that it should be enough that each node contains one or two complex multipliers and a few complex adders running at a couple of hundres MHz to support specifications similar to LTE. Additionally the nodes must communicate with each other over links with data rates in the order of some Gbps. Finally, a VHDL implementation of the system is proposed. The implementation is parameterized such that a system can be generated from a given specification.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-133998
Date January 2017
CreatorsBertilsson, Erik
PublisherLinköpings universitet, Datorteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds