Return to search

On Energy Efficient Mobile Hydraulic Systems : with Focus on Linear Actuation

In this dissertation, energy efficient hydraulic systems are studied. The research focuses on solutions for linear actuators in mobile applications, with emphasis on construction machines. Alongside the aspect of energy efficiency, the thesis deals with competing aspects in hydraulic system design found in the development of construction machines. Simulation models and controls for different concepts are developed, taking the whole machine into account. In line with this work, several proof of concept demonstrators are developed. First, pump controlled systems are studied and a novel concept based on an open-circuit pump configuration is conceived. Special consideration is paid to multi-mode capabilities that allow for a broadened operating range and potential downsizing of components. Simulation models and controls are developed and the system is experimentally validated in a wheel loader application. Second, the possibility for energy recuperation in valve controlled systems is investigated. In such solutions, a hydraulic motor, added to the meter-out port, is used for energy recovery during load lowering and in multi-function operation. Recuperated energy is either be used momentarily or is stored in a hydraulic accumulator. The proposed solution means an incremental improvement to conventional systems, which is sometimes attractive to machine manufacturers due to fewer uncertainties in reliability, safety and development cost. The energy recovery system is studied on a conceptual level where several alternative systems are proposed and a concept based on a two-machine hydraulic pressure transformer is selected for a deeper control study followed by experimental validation. Third, so-called `common pressure rail' systems are suggested. This technique is well established for rotary drives, at least for the industrial sector. However, in applying this technique to mobile hydraulics, feasible solutions for linear actuators are needed. In this dissertation, two approaches to this problem are presented. The first one is the hydraulic pressure transformer, studied in simulation as the key-component of a `series hybrid' topology for wheel loaders. In the second approach variable displacement linear actuators (VDLA) based on a 4-chamber cylinder and multi-mode control is applied. In a theoretical study a model predictive control approach is suggested and new insights to the trade-off between controllability and energy efficiency of a multi-chamber cylinder are presented. Finally, a fullscale hydraulic hybrid system based on secondary controlled hydraulic motors and VDLAs is designed and experimentally validated on a large excavator.
Date January 2017
CreatorsHeybroek, Kim
PublisherLinköpings universitet, Fluida och mekatroniska system, Linköpings universitet, Tekniska fakulteten, Linköping
Source SetsDiVA Archive at Upsalla University
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1857

Page generated in 0.0026 seconds