Return to search

Fundamental Estimation and Detection Limits in Linear Non-Gaussian Systems

Many methods used for estimation and detection consider only the mean and variance of the involved noise instead of the full noise descriptions. One reason for this is that the mathematics is often considerably simplified this way. However, the implications of the simplifications are seldom studied, and this thesis shows that if no approximations are made performance is gained. Furthermore, the gain is quantified in terms of the useful information in the noise distributions involved. The useful information is given by the intrinsic accuracy, and a method to compute the intrinsic accuracy for a given distribution, using Monte Carlo methods, is outlined. A lower bound for the covariance of the estimation error for any unbiased estimator s given by the Cramér-Rao lower bound (CRLB). At the same time, the Kalman filter is the best linear unbiased estimator (BLUE) for linear systems. It is in this thesis shown that the CRLB and the BLUE performance are given by the same expression, which is parameterized in the intrinsic accuracy of the noise. How the performance depends on the noise is then used to indicate when nonlinear filters, e.g., a particle filter, should be used instead of a Kalman filter. The CRLB results are shown, in simulations, to be a useful indication of when to use more powerful estimation methods. The simulations also show that other techniques should be used as a complement to the CRLB analysis to get conclusive performance results. For fault detection, the statistics of the asymptotic generalized likelihood ratio (GLR) test provides an upper bound on the obtainable detection performance. The performance is in this thesis shown to depend on the intrinsic accuracy of the involved noise. The asymptotic GLR performance can then be calculated for a test using the actual noise and for a test using the approximative Gaussian noise. Based on the difference in performance, it is possible to draw conclusions about the quality of the Gaussian approximation. Simulations show that when the difference in performance is large, an exact noise representation improves the detection. Simulations also show that it is difficult to predict the exact influence on the detection performance caused by substituting the system noise with Gaussian noise approximations. / Många metoder som används i estimerings- och detekteringssammanhang tar endast hänsyn till medelvärde och varians hos ingående brus istället för att använda en fullständig brusbeskrivning. En av anledningarna till detta är att den förenklade brusmodellen underlättar många beräkningar. Dock studeras sällan de effekter förenklingarna leder till. Denna avhandling visar att om inga förenklingar görs kan prestandan förbättras och det visas också hur förbättringen kan relateras till den intressanta informationen i det involverade bruset. Den intressanta informationen är den inneboende noggrannheten (eng. intrinsic accuracy) och ett sätt för att bestämma den inneboende noggrannheten hos en given fördelning med hjälp av Monte-Carlo-metoder presenteras. Ett mått på hur bra en estimator utan bias kan göras ges av Cramér-Raos undre gräns (CRLB). Samtidigt är det känt att kalmanfiltret är den bästa lineära biasfria estimatorn (BLUE) för lineära system. Det visas här att CRLB och BLUE-prestanda ges av samma matematiska uttryck där den inneboende noggrannheten ingår som en parameter. Kunskap om hur informationen påverkar prestandan kan sedan användas för att indikera när ett olineärt filter, t.ex. ett partikelfilter, bör användas istället för ett kalmanfilter. Med hjälp av simuleringar visas att CRLB är ett användbart mått för att indikera när mer avancerade metoder kan vara lönsamma. Simuleringarna visar dock också att CRLB-analysen bör kompletteras med andra tekniker för att det ska vara möjligt att dra definitiva slutsatser. I fallet feldetektion ger de asymptotiska egenskaperna hos den generaliserade sannolikhetskvoten (eng. generalized likelihood ratio, GLR) en övre gräns för hur bra detektorer som kan konstrueras. Det visas här hur den övre gränsen beror på den inneboende noggrannheten hos det aktuella bruset. Genom att beräkna asymptotisk GLR-testprestanda för det sanna bruset och för en gaussisk brusapproximation går det att dra slutsatser om huruvida den gaussiska approximationen är tillräckligt bra för att kunna användas. I simuleringar visas att det är lönsamt att använda sig av en exakt brusbeskrivning om skillnaden i prestanda är stor mellan de båda fallen. Simuleringarna indikerar också att det kan vara svårt att förutsäga den exakta effekten av en gaussisk brusapproximation. / <p>Report code: LiU-Tek-Lic-2005:54</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-4886
Date January 2005
CreatorsHendeby, Gustaf
PublisherLinköpings universitet, Reglerteknik, Linköpings universitet, Tekniska högskolan, Institutionen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, monograph, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Thesis, 0280-7971 ; 1199

Page generated in 0.0152 seconds