Return to search

Developing Reusable and Reconfigurable Real-Time Software using Aspects and Components

Our main focus in this thesis is on providing guidelines, methods, and tools for design, configuration, and analysis of configurable and reusable real-time software, developed using a combination of aspect-oriented and component-based software development. Specifically, we define a reconfigurable real-time component model (RTCOM) that describes how a real-time component, supporting aspects and enforcing information hiding, could efficiently be designed and implemented. In this context, we outline design guidelines for development of real-time systems using components and aspects, thereby facilitating static configuration of the system, which is preferred for hard real-time systems. For soft real-time systems with high availability requirements we provide a method for dynamic system reconfiguration that is especially suited for resourceconstrained real-time systems and it ensures that components and aspects can be added, removed, or exchanged in a system at run-time. Satisfaction of real-time constraints is essential in the real-time domain and, for real-time systems built of aspects and components, analysis is ensured by: (i) a method for aspectlevel worst-case execution time analysis; (ii) a method for formal verification of temporal properties of reconfigurable real-time components; and (iii) a method for maintaining quality of service, i.e., the specified level of performance, during normal system operation and after dynamic reconfiguration. We have implemented a tool set with which the designer can efficiently configure a real-time system to meet functional requirements and analyze it to ensure that non-functional requirements in terms of temporal constraints and available memory are satisfied. In this thesis we present a proof-of-concept implementation of a configurable embedded real-time database, called COMET. The implementation illustrates how our methods and tools can be applied, and demonstrates that the proposed solutions have a positive impact in facilitating efficient development of families of realtime systems.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-5857
Date January 2006
CreatorsTešanović, Aleksandra
PublisherLinköpings universitet, RTSLAB - Laboratoriet för realtidssystem, Linköpings universitet, Tekniska högskolan, Institutionen för datavetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1005, ;

Page generated in 0.0024 seconds