Return to search

Comparison of modes of convergence in a particle system related to the Boltzmann equation

The distribution of particles in a rarefied gas in a vessel can be described by the Boltzmann equation. As an approximation of the solution to this equation, Caprino, Pulvirenti and Wagner [3] constructed a random N-particle system. In the equilibrium case, they prove in [3] that the L1-distance between the density function of k particles in the N-particle process and the k-fold product of the solution to the stationary Boltzmann equation is of order 1/N. They do this in order to show that the N-particle system converges to the system described by the stationary Boltzmann equation as the number of particles tends to infinity. This is different from the standard approach of describing convergence of an N-particle system. Usually, convergence in distribution of random measures or weak convergence of measures over the space of probability measures is used. The purpose of the present thesis is to compare different modes of convergence of the N-particle system as N tends to infinity assuming stationarity.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-61303
Date January 2010
CreatorsPetersson, Mikael
PublisherLinköpings universitet, Matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds