Return to search

Computational Modeling of Deep Brain Stimulation

Deep brain stimulation (DBS) is a surgical treatment technique, which involves application of electrical pulses via electrodes inserted into the brain. Neurons, typically located in the basal ganglia network, are stimulated by the electrical field. DBS is currently widely used for symptomatically treating Parkinson’s disease patients and could potentially be used for a number of neurological diseases. In this study, computational modeling was used to simulate the electrical activity of neurons being affected by the electrical field, to gain better understanding of the mechanisms of DBS. The spatial and temporal distribution of the electrical field was coupled to a cable model representing a human myelinated axon. A passing fiber with ends infinitely far away was simulated. Results show that excitation threshold is highly dependent on the diameter of the fiber and the influence (threshold-distance and threshold-diameter relations) can be controlled to some extent, using charge-balanced biphasic pulses.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-9512
Date January 2007
CreatorsPetersson, Marcus
PublisherLinköpings universitet, Institutionen för medicinsk teknik, Institutionen för medicinsk teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds