Return to search

Metal Oxide Composites with Carbon Materials : Synthesis, Characterisation and Preliminary Catalytic Applications

Nanoparticles combining metal oxides TiO2 and graphene derivatives (reduced graphene oxide and multi-walled carbon nanotubes) were synthesised via wet chemistry methods. The materials were investigated through a series of techniques (scanning electron microscopy, X-ray diffraction, photoluminescence and UV-visible spectrophotometry). The electronic features of the materials were examined by cyclic voltammetry, and some photocatalysis testing was performed, using a solar light simulator and Rhodamine B as a pollutant in water. It was found that addition of the graphene derivative enhanced the electrical properties of the substance, which theoretically should reflect positively in the photocatalytic skill. However, photocatalysis was not found more efficient with the composites, compared to the pristine materials. Further, SnO2@ZnO core@shell nanoparticles were synthesised by wet chemistry methods. These materials were investigated by the mentioned methods and preliminary photocatalysis testing was executed, where the composites were found functional, although further testing is required.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-75791
Date January 2019
CreatorsBurström, Karin
PublisherLuleå tekniska universitet, Institutionen för teknikvetenskap och matematik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds