Return to search

Modeling and Timing Analysis of Industrial Component-Based Distributed Real-time Embedded Systems

The model- and component-based development approach has emerged as an attractive option for the development of Distributed Real-time Embedded (DRE) systems. In this thesis we target several issues such as modeling of legacy communication, extraction of end-to-end timing models and support for holistic response-time analysis of industrial component-based DRE systems. We introduce a new approach for modeling legacy network communication in component-based DRE systems. By introducing special-purpose components to encapsulate and abstract the communication protocols in DRE systems, we allow the use of legacy nodes and legacy protocols in a component- and model-based software engineering environment. The proposed approach also supports the state-of-the-practice development of component-based DRE systems. The Controller Area Network (CAN) is one of the widely used real-time networks in DRE systems especially in automotive domain. We identify that the existing analysis of CAN does not support common message transmission patterns which are implemented by some high-level protocols used in the industry. Consequently, we extend the existing analysis to facilitate the worst-case response-time computation of these transmission patterns. The extended analysis is generally applicable to any high-level protocol for CAN that uses periodic, sporadic, or both periodic and sporadic transmission of messages. Because an end-to-end timing model should be available to perform the holistic response-time analysis, we present a method to extract the end-to-end timing models from component-based DRE systems. In order to show the applicability of our modeling techniques and extended analysis, we provide a proof of concept by extending the existing industrial component model (Rubus Component Model), implementing the holistic response-time analysis along with the extended analysis of CAN in the industrial tool suite (Rubus-ICE), and conducting an automotive case study. / EEMDEF

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-13883
Date January 2012
CreatorsMubeen, Saad
PublisherMälardalens högskola, Akademin för innovation, design och teknik, Västerås : Mälardalen University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMälardalen University Press Licentiate Theses, 1651-9256 ; 146

Page generated in 0.0095 seconds