Return to search

Building an in-house spectral library using GCorbitrap HRMS

There are a great variety of environmentals contaminants, a lot of which are understudied asit is today. The aim of this study was to develop an in-house high-resolution spectral librarycontaining environmental contaminants, with focus on plastic additives. The spectral librarywould then be used to perform suspect screening on real sample extracts. A list of standardswas acquired, prepared and then analyzed with GC-EI-Orbitrap. The files from the analysiswere converted and then processed in a software called MS-DIAL. Once the analyte wasidentified, the data was exported to MS-FINDER. MS-FINDER performs fragmentannotation and generates in silico spectra, and the spectral data is then saved as an MSP file.An MSP file is a file based on text containing mass spectrometric data, and is the mostcommonly supported file for spectral libraries. The individual MSP files for the standards arethen collected into a common MSP file, which can be opened in MS-DIAL to performsuspect screening. The suspect screening in this study was performed as a retrospectiveanalysis of indoor dust samples from a study in 2021.From the beginning, 60 standards out of 80 available standards were included. The principalreason for a standard not being included was that the compound would most certainly notelute using GC with the set analytical parameters. Out of the 60 analyzed standards, 32compounds could be added to the spectral library. No distinct peak within thechromatographic run time was the main reason for not being able to add a standard. Despiteadding 32 different compounds into the spectral library, a total of 51 individual MSP-fileswere generated. Some of the technical mixtures generated a chromatogram with severaldifferent peaks, and MSP files were generated for each of the most prominent peaks. Thiswas done since it could still provide useful information in an identification process.The suspect screening in this study was performed as a retrospective analysis of indoor dustsamples from 2019. Into the spectral library, 32 different compounds were included, and 10of these were found in the different indoor dust samples when performing the suspectscreening.Building a spectral library in this way is a time consuming process with a lot of manual work,but spectral libraries are nonetheless necessary in the process of effectively monitoringenvironmental contaminants, to assist in risk assessment and decision making for regulatorson identified contaminants.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:oru-100978
Date January 2022
CreatorsKolsmyr, Elias
PublisherÖrebro universitet, Institutionen för naturvetenskap och teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds