Return to search

Spacetime geometry of a wormhole modified BTZ black hole

The unitarity problem for the BTZ black hole can possibly be solved by a coordinate transformation in which the event horizon is extended to a wormhole. In a model proposed by S.N. Solodukhin, this is done by the addition of a wormhole parameter $\lambda$ to the BTZ black hole line element. This thesis studies the changes in the spacetime geometry that comes with the addition of such a parameter. The focus of study are geodesic behaviour and possible bound states of waves. Investigating a possible source of the wormhole, the stress-energy tensor ansatz for a perfect fluid is also tested. The thesis concludes that there are notable changes to the spacetime depending on the presence of either a black hole or a wormhole. These changes includes orbital trajectories of geodesics and localized bound states of waves. The changes are most notable for $\lambda>1$ but also detectable for small parameter corrections. The wormhole spacetime can however not be generated by a simple addition of matter in a perfect fluid form.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-161459
Date January 2018
CreatorsSundelin, David
PublisherStockholms universitet, Fysikum
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds