THE INFLUENCE OF LACTOBACILLI AND STAPHYLOCOCCUS AUREUS ON IMMUNE RESPONSIVENESS IN VITRO

Alteration of gut microbiota has been associated with development of immune mediated diseases, such as allergy. In part, this could be due to the influence of microbes in shaping the immune response. In paper I, we investigated the association of early-life gut colonization with bacteria, and numbers of IL-4, IL-10 and IFN-γ producing cells at two years of age in response to PBMC stimulation with phytohemagglutinin (PHA) in vitro. Early Staphylococcus (S) aureus colonization was directly proportional to increased numbers of IL-4 and IL-10 secreting cells, while early co-colonization with lactobacilli and S. aureus associated with a decrease in IL-4, IL-10 and IFN-γ secreting cells compared to S. aureus alone. This was also confirmed in in vitro stimulations of PBMC with Lactobacillus and/or S. aureus strains, where S. aureus-induced IFN-γ production by Th cells was down regulated by co-stimulation with Lactobacillus. In paper II, we investigated the effects of UV-killed and/or culture supernatant (sn) of Lactobacillus strains and S. aureus strains on IEC and immune cell responses. IEC exposed to S. aureus-sn produced CXCL-1/GRO-α and CXCL-8/IL-8, while UV-killed bacteria had no effect. Further, PBMC from healthy donors exposed to Lactobacillus-sn and S. aureus-sn were able to produce a plethora of cytokines, but only S. aureus induced the T-cell associated cytokines: IL-2, IL-17, IFN-γ and TNF-α; which were down regulated by co-stimulation with any of the different Lactobacillus strains. Intracellular staining verified S. aureus-induced IFN-γ and IL-17 production by Th cells, and increased CTLA-4 expression and IL-10 production by T reg cells. In conclusion, we show that colonization with gut microbiota at early age modulates the cytokine response in infancy. In addition, bacterial species influence cytokine response in a species-specific manner and we demonstrate that lactobacilli modulate S. aureus-induced immune response away from an inflammatory phenotype.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-94326
Date January 2013
CreatorsHaileselassie, Yeneneh
PublisherStockholms universitet, Institutionen för molekylär biovetenskap, Wenner-Grens institut, Stockholm : Department of Molecular Biosciences, The Wenner-Gren Institute
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds