Return to search

Hydrogen Fuel from Water - An Advanced Electrocatalyst based on Nitrogen doped Carbon Nanotubes

The production of cost-effective catalysts for the production of hydrogen by electrolysis of water is important for clean energy production. In this work we report on a study of molybdenum disulfide (MoS2) as catalyst for the hydrogen evolution reaction (HER). Nitrogen doped carbon nanotubes (NCNTs) directly synthesized onto carbon paper have been decorated with MoS2. The electrodes utilize the improved conductivity of the NCNTs and the carbon paper for electron transport, combined with the high catalytic activity of MoS2. The NCNTs were successfully decorated with co-axial nano-flakes of MoS2 by a single step solvothermal process using Dimethylformamide (DMF) and ammonium tetrathiomolybdate. MoS2 was also prepared with alternative methods for comparison. The effects of supporting MoS2 on NCNTs were studied by simulations with density functional theory (DFT). The most active adsorption sites for hydrogen on MoS2 were identified and were on the edges. The catalyst showed competitive activity with other earth-abun- dant catalysts with an onset potential of 170 mV and a small Tafel slope of 40 mV/dec. The improved catalytic activity of HER by having NCNTs as support was confirmed by DFT and experimental results.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-105553
Date January 2015
CreatorsEkspong, Joakim
PublisherUmeå universitet, Institutionen för fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds