Spatial and Temporal Variations of Solifluction and Related Environmental Parameters in the Abisko Mountains, Northern Sweden

This thesis presents an assessment of the variation in solifluction occurrence, morphometry and movement rates in the Abisko region, northern Sweden. Variations in movement rates are analyzed both on a regional and local scale. The main methodological contributions of this thesis have been to provide new techniques of analyzing spatial and temporal variations of solifluction in order to detect long term temporal trends and to regionalize the variations in movement rates. The spatial analysis is achieved by using a combination of field measurements, GIS and remote sensing techniques and statistical analysis. The results are presented in six papers, focusing on the morphometry of solifluction landforms (paper I), the occurrence of permafrost (paper II), the spatial and temporal variations of lobe front movement rates using aerial photographs (paper III), the temporal, regional and local spatial variations in movement rates (paper IV – VI) and statistical modelling of the occurrence of solifluction landforms and calculation of geomorphic work (paper V and VI). The results show that, on a regional scale, vegetation patterns are a major control on the occurrence of turf-banked solifluction landforms, with high NDVI-values (vegetation) associated with the presence of forms. Elevation is also a major control on a regional scale with a decrease in lobe dimensions and movement rates with increased elevation. High soil moisture values are associated with larger landforms and increased movement rates. Movement rates are generally higher in the western part of the region and appear to increase with higher MAAT. Equally, geomorphic work is greatest in the western part of the region. The important controls on a local scale vary from site to site, but include vegetation, slope angle and soil moisture. The photo analysis indicates that annual movement rates of lobe fronts in Kärkevagge and Låktatjåkka valley over the period 1959-2000 ranges from not-detectable to 63mm/yr. The permafrost model shows probabilities >0.8 for permafrost at elevations above 1300 m a.s.l. in the western part of the region, decreasing to altitudes over 850 m a.s.l. in the eastern part of the region. Calculated geomorphic work suggests that solifluction is a significant denudational agent in the sub-Arctic mountains of northern Sweden, but less so than previously estimated.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-101419
Date January 2009
CreatorsRidefelt, Hanna
PublisherUppsala universitet, Institutionen för geovetenskaper, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 648, ;

Page generated in 0.0026 seconds