Return to search

Optimized Tuning of Parameters for HVDC Dynamic Performance Studies

HVDC (High Voltage Direct Current) is used all over the world for transmission of electric power due to lower losses compared to traditional HVAC (High Voltage Alternating Current). However, the procedure of converting AC into DC puts great demand on the control system of the converter stations. These control systems need to be tuned properly to give the HVDC system the correct dynamics to handle variations in the network load and other disturbances. In this thesis, it was investigated if optimization algorithms can be used for tuning of the control parameters. Focus was on three parts of the control system, the Current Control Amplifier, Voltage Dependent Current Order Limiter and the Rectifier Alpha Minimum Limiter. The Nelder & Mead Simplex method was used and several different objective functions were tested, including combinations of integral square error, integral absolute error, rise time and overshoot. Several different fault cases and scenarios were tested and results of the optimization were compared to the manually tuned control system. It was found that the results of the optimization were comparable with the manually tuned parameters for many of the cases tested. The biggest issue encountered was that the optimization algorithm often finds a local minimum in the objective function, leading to a suboptimal solution. This issue could be solved by running the optimization several times, using different initial values. It is concluded that using optimization algorithms could be a useful tool for tuning of the HVDC control system.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-193702
Date January 2013
CreatorsAndersson, Axel
PublisherUppsala universitet, Institutionen för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC F, 1401-5757 ; 12038

Page generated in 0.0019 seconds