Return to search

A High Order Finite Difference Method for Simulating Earthquake Sequences in a Poroelastic Medium

Induced seismicity (earthquakes caused by injection or extraction of fluids in Earth's subsurface) is a major, new hazard in the United States, the Netherlands, and other countries, with vast economic consequences if not properly managed. Addressing this problem requires development of predictive simulations of how fluid-saturated solids containing frictional faults respond to fluid injection/extraction. Here we present a numerical method for linear poroelasticity with rate-and-state friction faults. A numerical method for approximating the fully coupled linear poroelastic equations is derived using the summation-by-parts-simultaneous-approximation-term (SBP-SAT) framework. Well-posedness is shown for a set of physical boundary conditions in 1D and in 2D. The SBP-SAT technique is used to discretize the governing equations and show semi-discrete stability and the correctness of the implementation is verified by rigorous convergence tests using the method of manufactured solutions, which shows that the expected convergence rates are obtained for a problem with spatially variable material parameters. Mandel's problem and a line source problem are studied, where simulation results and convergence studies show satisfactory numerical properties. Furthermore, two problem setups involving fault dynamics and slip on faults triggered by fluid injection are studied, where the simulation results show that fluid injection can trigger earthquakes, having implications for induced seismicity. In addition, the results show that the scheme used for solving the fully coupled problem, captures dynamics that would not be seen in an uncoupled model. Future improvements involve imposing Dirichlet boundary conditions using a different technique, extending the scheme to handle curvilinear coordinates and three spatial dimensions, as well as improving the high-performance code and extending the study of the fault dynamics.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-298414
Date January 2016
CreatorsTorberntsson, Kim, Stiernström, Vidar
PublisherUppsala universitet, Avdelningen för beräkningsvetenskap, Uppsala universitet, Avdelningen för beräkningsvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC F, 1401-5757 ; 16038

Page generated in 0.0026 seconds