Mängden data som transporteras över Internet idag är stor. Vilket innebär att det finns ett överflöd av information och ett behov för att urskilja relevant innehåll mot irrelevant. För att uppnå detta används rekommendationssystem som i sin tur använder olika filtreringstekniker. Det finns tre huvudtyper av tekniker, innehållsbaserad kollaborativ filtrering och hybrid tekniker. Syftet med studien är att jämföra olika filtreringstekniker och undersöka hur teknikerna förhåller sig till träffsäkerhet mot testset, beräkningsbelasning och användarnöjdhet. För att genomföra detta på ett nyanserat sätt har en strukturerad litteraturstudie genomförts där sju olika steg för inhämtning och analys av dokument gjorts. En kvalitativ metanalys genomfördes på de 28 utvalda tidskriftsartiklarna. IFT rekommendationssystem var den rekommendationsteknik som anses minst effektiv utifrån den definition som studien utgått från. KFT och hybrid rekommendationssystem är de som är mest effektiva enligt denna studie. Hybrid system kan ta vara på fördelar från alla andra tekniker och kan synergiskt också motverka vissa av teknikernas förknippade brister, mot kostnaden av att implementations-komplexiteten ökar.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-354068 |
Date | January 2018 |
Creators | Lundström, Fredrik, Sandberg, Sofia |
Publisher | Uppsala universitet, Informationssystem, Uppsala universitet, Informationssystem |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds