Return to search

Numerical simulations of the Dynamic Beam Equation in discontinuous media

The study examines the Projection method and the simultaneousapproximation-term (SAT) method as boundary treatment for the dynamic beam equation using summation-by-parts (SBP) operators for handling the inner domain. The methods are examined for both the homogeneous constant coefficient case, and the inhomogeneous piecewise constant coefficient case with a coupled interface. The outer boundaries are handled by SAT or Projection, the coupled interfaced is handled by Projection or a mix between Projection and SAT. Solutions are integrated in time with finite central difference schemes and compared to analytical solutions. A convergence study is conducted with respect to the spatial discretization to measure the accuracy, and the stability is examined by numerical simulations of the CFL-condition. The study shows that Projection has the same accuracy as SAT for most boundary conditions while allowing for a larger timestep. A discontinuity in the medium is found to be handled equally accurate by Projection and the Projection and SAT mixture for all but one case studied, where the mixture was slightly more accurate.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-416818
Date January 2020
CreatorsWik, Niklas, Niemelä, David, Wagner Zethrin, Valter
PublisherUppsala universitet, Avdelningen för beräkningsvetenskap, Uppsala universitet, Avdelningen för beräkningsvetenskap, Uppsala universitet, Avdelningen för beräkningsvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMATVET-F ; 20006

Page generated in 0.0529 seconds