Studies of the axial-vector transition form factors of the process Ω− → W−Ξ0 in chiral perturbation theory

This work is included in a broader research of the hadron theory group of Uppsala University and its collaborators tackling the quest for an understanding of the quark distribution inside hadrons by joining threedifferent approaches of QCD namely chiral perturbation theory, dispersion theory and lattice QCD. This thesis contributes by computing in chiral perturbation theory, the quark-masses dependence of form factors. The next-to-next-to-Leading order (NNLO) contribution to the form factors is calculated from one-loop diagrams which brings hadron-masses dependences. The hadron masses are themselves dependent on quark masses. Consequently, the quark-mass dependence of the hadron masses is also addressed in this thesis.The studied process Ω− → W−Ξ0 possesses too many one-loop diagrams to be treated entirely here. This work focuses on the axial-vector sector and more specifically the part coming from the diagrams linear in the low-energy constant hA (see figure 2).To do so, Mathematica and specifically the packages FeynCalc, FeynHelpers and Package X are used. Vector transition form factors at NNLO are presented in the thesis of my colleague Magnus Bertilsson.The present thesis demonstrates that the calculational framework is feasible and paves the way for a complete NNLO calculation.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-504673
Date January 2023
CreatorsDe Munck, Hélène
PublisherUppsala universitet, Kärnfysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationFYSAST ; FYSMAS1202

Page generated in 0.0023 seconds