Return to search

The impact of reduced neuronal p75NTR expression on sensory neuron phenotype and associated glia

The common neurotrophin receptor, p75NTR, has been implicated in diverse responses of sensory neurons including a role in nociception following nerve injury, suggesting that it may serve a similar role in intact sensory neurons and their satellite glial cells (SGCs). To examine the impact of suppressing neuronal p75NTR expression on known molecular modulators/regulators of the nociceptive state namely, the sodium channels NaV1.8 and NaV1.9, the nerve growth factor receptor TrkA, the potassium channel Kir4.1, glial fibrillary acidic protein (GFAP), SGC p75NTR, connexin 43, we intrathecally infused p75NTR anti-sense oligonucleotides (AS OGN), previously shown by Obata et al. (2006) to effectively suppress p75NTR expression in intact neurons. Male, Wistar rats were divided into three groups, receiving either no treatment (non-infused), seven day intrathecal infusion of p75NTR AS OGN or sense control (SC OGN) via an osmotic pump. Serial L4 and L5 DRG sections were processed for immunohistochemistry to detect alterations in NaV1.8, NaV1.9, TrkA, Kir4.1, p75NTR, GFAP and connexin-43 protein expression. Sciatic nerve sections were also processed for immunohistochemistry to detect NaV1.8, NaV1.9, TrkA and GFAP protein expression.
Infusion of p75NTR AS OGNs resulted in a significant decrease in neuronal p75NTR expression, however no significant change was observed in neuronal NaV1.8, NaV1.9 or TrkA expression relative to SC OGN treated or non-infused controls. On the contrary, SGC expression of phenotypic markers normally associated with the reactive state that is induced in these cells in response to peripheral nerve axotomy was dramatically altered. More specifically, in response to p75NTR AS OGN infusion, there was a significant increase in SGC protein expression of the cytoskeletal protein GFAP and p75NTR, along with a significant decrease in expression of the inward rectifying potassium channel Kir4.1. Preliminary data also revealed this induced reactive state in SGCs to be associated with an increase in the number of SGCs surrounding individual neurons as well as increased SGC expression of the gap junction protein, connexin 43.
In conclusion, reductions in neuronal p75NTR expression and potentially reduced neurotrophin signaling lead to alterations in neuron/glial or axon/glial communication that results in induction of a reactive phenotype in the associated SGCs. With our ever increasing understanding of the role of SGCs modulating pain states, elucidation of the pathways leading to adoption of pathological phenotypes can help in the identification of novel therapeutic targets.

Identiferoai:union.ndltd.org:USASK/oai:ecommons.usask.ca:10388/ETD-2011-10-185
Date2011 October 1900
ContributorsVerge, Valerie
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext, thesis

Page generated in 0.002 seconds