Return to search

The role of Chfr and Ubc13 in mitosis.

The Chfr checkpoint is a point at which a cell checks whether it is safe to enter mitosis. Chfr is a protein that functions at this particular checkpoint to ensure safe entry into mitosis, but the molecular mechanism by which this protein functions is not entirely clear. The hypothesis in this thesis is that Ubc13, Chfr, and Uev1/Mms2 function together in mitosis. The results were observed using immunocytochemistry, the mitotic shake off procedure, Western blot analysis, and coimmunoprecipitation. High Ubc13, Mms2, and Chfr-Ub levels at the interphase-early prophase transition, indicate that these proteins function together at the Chfr checkpoint. Localization of Chfr to decondensed chromatin in interphase cells and to decondensing chromatin in telophase cells indicates a decondensing function for Chfr. Interaction between Chfr and Ubc13, Chfr and phosphorylated histone H3, as well as Ubc13 and phosphorylated histone H3, further indicates that these proteins may function together at the Chfr checkpoint, because phosphorylated histone H3 is a mitotic protein at that particular point in mitosis. Localization of Chfr, Ubc13, and Mms2 to the centrosomes, indicates that they function together at these sites to target substrates important in centrosome maturation, separation, and spindle formation. Furthermore, there are two molecular states of Chfr: Chfr and Chfr-Ub. Chfr is predominant at late prophase, whereas, Chfr-Ub is predominant at interphase-early prophase. Chfr increases in level upon nocodazole exposure at late prophase to counteract the mitotic stress; and it also looses its ubiquitin signal upon passage into mitosis. High Ubc13 and Mms2 levels coincide with high Chfr-Ub levels at the interphase-early prophase transition, indicating that they function together at the Chfr checkpoint. The ubiquitin signal could be either K-48-linked or K-63-linked in nature. The Chfr, Ubc13, and Mms2 protein complex could function through a self ubiquitination-decondensation-Chfr destruction-recondensation mechanism. Chfr could bind to pH3 and its auto-ubiquitin signal to serve as a bulky modification that hinders chromosome condensation.

Identiferoai:union.ndltd.org:USASK/oai:ecommons.usask.ca:10388/ETD-2013-08-1186
Date2013 August 1900
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext, thesis

Page generated in 0.0024 seconds