Return to search

Human dynamic networks in opportunistic routing and epidemiology

Measuring human behavioral patterns has broad application across different sciences. An individuals social, proximal and geographical contact patterns can have significant importance in Delay Tolerant Networking (DTN) and epidemiological modeling. Recent advances in computer science have not only provided the opportunity to record these behaviors with considerably higher temporal resolution and phenomenological accuracy, but also made it possible to record specific aspects of the behaviors which have been previously difficult to measure.<p>
This thesis presents a data collection system using tiny sensors which is capable of recording humans proximal contacts and their visiting pattern to a set of geographical locations. The system also collects information on participants health status using weekly surveys. The system is tested on a population of 36 participants and 11 high-traffic public places. The resulting dataset offers rich information on human proximal and geographic contact patterns cross-linked with their health information.<p>
In addition to the basic analysis of the dataset, the collected data is applied to two different applications. In DTNs the dataset is used to study the importance of public places as relay nodes, and described an algorithm that takes advantage of stationary nodes to improve routing performance and load balancing in the network. In epidemiological modeling, the collected dataset is combined with data on H1N1 infection spread over the same time period and designed a model on H1N1 pathogen transmission based on these data. Using the collected high-resolution contact data as the models contact patterns, this work represents the importance of contact density in addition to contact diversity in infection transmission rate. It also shows that the network measurements which are tied to contact duration are more representative of the relation between centrality of a person and their chance of contracting the infection.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-03092011-110140
Date31 March 2011
CreatorsHashemian, Mohammad Seyed
ContributorsWaldner, Cheryl, Eager, Derek, Osgood, Nathaniel D., Stanley, Kevin G.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-03092011-110140/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0025 seconds