Return to search

Breakthrough behavior of H2S removal with an iron oxide based CG-4 adsorbent in a fixed-bed reactor

Abstract
Hydrogen sulfide (H2S) is an environmentally hazardous, corrosive, and toxic gas, mostly generated in gas and oil industry. For small-scale natural gas processing sites (less than 10 tonne S/day), the use of regenerable iron oxide adsorbent to adsorb H2S from natural gas is still an economical and effective method.
The objective of this research project was to understand the performance of an iron oxide adsorbent, recently emerging in the Canadian market, in removing H2S from gas streams. To accomplish this, the breakthrough behaviors of H2S adsorption in a fixed-bed reactor under elevated pressures were studied. The effects of variations in superficial velocity from 0.09 m/s to 0.26 m/s, operating pressure from 4 to 50 atm absolute, and the height of the fixed-bed from 11.7 cm to 24.5 cm on breakthrough curves and sulfur loading were investigated. In all the experiments, the H2S concentration profiles of the exiting gas from the reactor were measured until the bed was saturated.
It was found that the shape of the breakthrough curves depend on the superficial velocity and the inlet H2S concentration in gas streams. Under both higher superficial velocity and higher inlet H2S concentration, the shape of the breakthrough curve becomes steeper. The sulfur loading of the adsorbent depends on the superficial velocity, the inlet H2S concentration in gas streams, and the bed height. The sulfur loading decreases as the superficial velocity and the inlet H2S concentration increase, but increases as the bed height increases. The change of operating pressure does not have a significant effect on the shape of the breakthrough curve or sulfur loading of the adsorbent. The investigation was also extended using the regenerated adsorbents. A mathematical formula was developed to describe the breakthrough curves.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-10082008-132123
Date21 October 2008
CreatorsWang, De Ming
ContributorsPhoenix, Aaron, Peng, Ding-Yu, Evitts, Richard W., Chuang, Karl T., Scott, Robert, Wang, Hui
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-10082008-132123/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0027 seconds