Return to search

Leak detection in pipelines using the extended kalman filter and the extended boundary approach

A model based algorithm of pipeline flow is developed and tested to determine if the model is capable of detecting a leak in a pipeline. The overall objective of this research is to determine the feasibility of applying the Extended Kalman Filter and a new technique defined as the Extended Boundary Approach to the detection of leakages in a physical water distribution system. <p>The demands on the water supply system increase as the human population grows and expands throughout the world. Water conservation is required to ensure an adequate supply of water remains for future generations. One way to conserve this water is by reducing the leakages in underground water distribution systems. Currently between 10 to 50 percent of the pumped water is lost due to unrecognized leakages. This results in a huge revenue loss of water, chemicals and energy that is required for transporting the water. The detection of underground leakages is a very complex problem because many leakages are small and go unnoticed by todays leak detection technology. <p>A model based leak detection technique is developed and tested in this thesis. The Method of Characteristics is used to develop a model of a single pipeline. This method is extensively used and provides the most accurate results of the two partial differential equations of continuity and momentum that describe pipe flow. The Extended Kalman Filter is used to estimate two fictitious leakages at known locations along the pipeline. In order to ensure the model is observable four pressure measurements are needed at equally spaced nodes along the pipeline. With the development of the Extended Boundary Approach only the upstream and downstream pressure measurements are required, however; the upstream and downstream flow measurements are also required. Using the information from the two fictitious leaks the actual leak location and magnitude can be determined. This method is only capable of detecting one leak in a single pipeline. <p>The results of the developed model show that the approach is capable of theoretically determining the leak location and magnitude in a pipeline. However, at this time, the feasibility of implementing the proposed leak detection method is limited by the required level of accuracy of the sensors which is beyond that found in todays technology. It was also found that the EKF used primarily steady state information to predict the leakage. It is recommended that further research explore alternate models which might better enhance the EKF approach using transient information from the pipeline. This may allow implementation on a real pipeline.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-10092007-142246
Date10 October 2007
CreatorsDoney, Kurtis
ContributorsNoble, Scott, Habibi, Saeid R., Burton, Richard T., Bugg, James D., Shi, Yang
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-10092007-142246/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0023 seconds